[ I N

BELLCOMM, INC. 0 M0
955 L'ENFANT PLAZA NORTH, SW.  WASHINGTON, D. C. 20024 BGS 7632

TR

E

N ..

SUBJECT: UNIVAC 1108 FORTRAN V Version of pATE:  July 10, 1969
MIT Conic Subroutines Used in
Apollo Guidance Computer - Case 610 FROM: 0. Guffee

C.
J. C. Gurasich

ABSTRACT

This memorandum contains documentation of the UNIVAC
1108, FORTRAN V version of the conic subroutines as described in
Guidance System Operatlon Plan (GSOP) for program LUMINARY. The
conic subroutines form a compatible group of routines which are
used extensively by higher level guidance routines in both the
Command Module and Lunar Module computers.

A1l of the conic subroutines have heen tested against
data obtained from MIT. The MIT data are for tests performed
with the Apollo Guidance Computer (AGC) and with a double pre-
cision version of the subroutines programmed on an IBM 360 (MAC).
The results produced by the UNIVAC 1108 version agree more closely
with MAC than do the AGC results.

The conic subroutines are discussed from a user's
viewpoint. Possible problem areas are outlined, and a discussion
of numerical accuracy and test results are included.
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I. Introduction

The conic subroutines, as described in Guidance System

Operation Plan (GSOP) for program_LUMINARY(l), have been programmed
in FORTRAN V for the UNIVAC 1108. These subroutines form a com-
patible group of conic subroutines which are used extensively by
higher level guidance routines and programs in both the Command
Module and the Lunar Module computers. The conic subroutines are
presently being used in subroutines capable of performing the tar-
geting calculations for coelliptic rendezvous maneuvers, The
coelliptic rendezvous targeting subroutines are the Apollo on-board
routines as described in Reference (1) and include capability for
Coelliptic Sequence Initiation (CSI), Constant Differential Altitude
(CDH), Transfer Phase Initialization (TPI), and midcourse corrections.
The targeting subroutines are being developed jointly by the authors
and G. J. Miel (2011), and at this time are in final stage of testing.

A verbal description of the available conic subroutines
is contained in Section II followed by Section IIT with a dis-
cussion of the references used 1n the implementation of the sub-
routines. Sectlons IV and V describe the subroutines from a user's
viewpoint. Section VI 1s a discussion of possible logical problem
areas of which the user should be aware. Finally, in Section VII
test results are presented and possible numerical difficulties are
discussed.

II. Conic Subroutines - Description

X The conic subroutines can be divided into two groups.
The first group contalns those subroutines required by higher
level guidance subroutines and thus must be called externally.
The second group includes the subroutines that do calculations in
support of the first group.

The subroutines used by external programs are:

1. Kepler Subroutine: solves for the two-body position
and veloclity vectors at a terminal position, given
the initial position and velocity vectors and a trans-
fer time to the terminal position.
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Lambert Subroutine: solves for the two-body initial
velocity vector, given the initial and terminal
position vectors and a desired transfer time,

Time-Theta Subroutine: solves for the two-body trans-
fer time, given the initial position and velocity vec-
tors and the true anomaly difference (transfer angle)
to the terminal position.

Time-Radius Subroutine: solves for the two-body trans-
fer time to a specified radius given the initial position
and velocity vectors, the desired radius magnitude, and

a flag denoting the upward or downward intersection.

Pericenter-Apocenter Subroutine: solves for the two-
body pericenter and apocenter altitudes, given the
position and velocity vectors for a point on the tra-
jectory.

The subroutines which are required by the above sub-

routines are:

6.

Apsides Subroutine: solves for the two-body radii
of apocenter and pericenter and the eccentricity of
the trajectory, given the position and velocity vec-
tors for a point on the trajectory.

Conic Parameters Subroutine: solves for unit posi-
tion, unit velocity and unit normal vectors as well

as the cotangent of the flight path angle (as measured
from the vertical), the normalized semi-latus rectum,
and reciprocal of the normalized semi-major axis,#
given the position and velocity vectors.

Universal Variable Subroutine: solves for the univer-
sal variables required to solve for time in the
universal form of Kepler's equation. Inputs required
are an initial position vector, the cotangent of the
flight path angle, the normalized semi-latus rectum,
the reciprocal of the normalized semi-major axis,

and the central angle from the initial position vec-
tor to a final position vector.

Kepler Equation Subroutine: solves for the values
of the two transcendental functions and for time
using the universal form of Kepler's equation, given
the universal variables. Thils subroutine uses a

#The semi-latus rectum and semi-major axls are normalized
by the magnitude of the initial position vector.
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ninth-degree Chebyshev polynomial approximation
to the infinite series form for the universal tran-
scendental functions.

10. State Vector Subroutine: solves for the two-body
terminal position and velocity vectors, given the
universal variables and the solution to Kepler's
equation.

Two additional subroutines are also described in the
GSOP: the Geometric Parameter Subroutine and the Iterator Sub-
routine. The Geometric Parameter Subroutine performs calculations
which are a subset of the calculations performed by the Conic
Parameter Subroutine. The Iterator Subroutine computes the value
of the independent variable which drives the error in the dependent
variable to zero during the 1terations in the Kepler and the Lam-
bert subroutines. In the UNIVAC 1108 formulation by the authors,
it was more convenient to build the geometric parameter and
iterator into the conic subroutine calculations rather than
establish separate subroutines.

Another routine structured like the GSOP model, but
considerably more complex than the conic routines is:

11. Initial Velocity Subroutine: computes the initial
velocity vector for an integrated trajectory that
passes between initial and final position vectors
in a specified time.

This subroutine controls a mirror-image iterative targeting pro-
cess to achieve its answer. It uses alternately the Lambert
subroutine and a precision integration package for ballistic
flight that includes a full gravity model. An offset target
vector used by the Lambert routine is progressively shifted so
that the Lambert-computed velocity results in an integrated
trajectory that hits the original target vector. The offset

is available as an auxiliary output. An input variable specifies
the number of iteration cycles, usually three. A zero value will
terminate the calculation after the first Lambert solution.

ITI. cComputations Required Within the Subroutines - References

References (1) and (2) were used extensively in
writing the FORTRAN version of the subroutines. Reference (1)
contains the basic flow charts of the required computations,
while Reference (2) contains flow charts that would be required
by one who would be programming the on-board computers. Fortu-
nately, Reference (2) relates its nomenclature to the nomenclature
as used in the GSOP (Reference (1)) so comparison of the two
references is relatively easy. Reference (2) 1is valuable because
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details relating to tests performed during the computations,
error terminations, corrective action when calculations exceed
theoretical limits, and verbal description of the computations
are given. In general these tests and required corrective
actions are not indicated in the flow diagrams of Reference (1).

Reference (3) was prepared with the intention that it
be used together with a symbolic tabulation of the actual com-
puter program. The nomenclature used by this reference is dif-
ferent from that of References (1) and (2); however, Reference (3)
does contain a description of each variable which it uses. Two
situations arose in which the information contained in References
(1) and (2) was either incomplete or incorrect, and in both cases
it was possible to produce a working program by interpreting the
program listings in Reference (3) along with References (4) and

(5).

Finally, References (4), (5) and (6) along with Reference
(2) provide the derivations and basic background for understanding
the meaning of the computations performed within the conic sub-
routines.

IV. Arrangement of the Subroutines

A single common block was established for inclusion
in each subroutine. Each variable in this common block has
exactly the same meaning within all subroutines although all
variables are not used within every subroutine. This procedure
allows for minimum computation time and minimum storage require-
ments since a call list is not required when one subroutine calls
another subroutine.

As mentioned in a previous section, the Geometric
Parameter and the Iterator Subroutines have been built into the
routines which call them. These two subroutines do, however,
require a call list. This approach appeared reasonable since
the built-in form never required more than four or five lines
of FORTRAN coding, and each of these subroutines is required by
only two of the conic subroutines.

Appendix A identifies all FORTRAN variables used within
the conic subroutines along with the nomenclature used in the
GSOP. The variables are divided into groups according to their
function and are in alphabetical order within each group. All
of the conic FORTRAN variables are in a common block /CC@NIC/
which is contained in a PDP deck (described in Appendix B) with
entry point QC@NIC# FC@PY. The common block is inserted into
the various subroutines at time of compilation by means of the
INCLUDE statement.

In addition to the /CC@NIC/ common block, two other
common blocks, /CC@N/ and /CSPNT/, are required within the sub-
routines. /CC@N/ contains conversion constants required within
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the subroutines and /CSPNT/ contains special print request flags.
These common blocks, described in Appendix B, are also compiled
into required subroutines by means of the INCLUDE statement.

The present arrangement of the three common blocks is only for
convenience in using the conic routines in an existing program.
The user 1is free to rearrange the variables into other common
blocks as long as all variables are included in the subroutines
as required.

In order to use a subroutine via a call from an
external program, it is necessary to fill variable values in the
common block from input variables. At the conclusion of the
computation, values from the common block which are to be out-
put must be stored. To facilitate this a buffer subroutine has
been written which contains entry points with associated call
lists for each of the required subroutines. Appendix C contains
both the subroutine names as they would be called when the variable
values are contained within a common block (without a call 1list)
and the subroutine names which would be used externally when data
must be carried through a call 1list. Some subroutines have not
been included with a call list name, but the user may add these
with the proper calling arguments if their use 1s required.

The buffer subroutine is listed in Appendix D and
comment cards are included to define the call list variables.
The buffer subroutine is called MITC@N; however, all calls to
this subroutine must be via one of the entry points.

The first entry point shown is ENTRY MITINI(ICB@DY),
which is called to initialize certain variables and constants
according to the attracting body (presently either Earth or
Moon). This entry point must be called one time before using
any of the conic subroutines and thereafter a call to this
routine is necessary only if the central body should change.

The variable values set by this portion of the body are as given
in Reference (1) and can be changed by the user, or extended to
use the conic subroutine with other attracting bodies.

The remainder of the entry points of MITC@N are
documented in the listing of Appendix D. The present form of the
call lists are as required by the authors, but freedom exists
for the user to increase or decrease these call lists. Appendix
E contains a listing of each of the conic subroutines.

A word of caution to the user - in its present form,
it is assumed that all input and output vectors are dimensioned
four with the magnitude of the vector being the fourth component.
It is further assumed that input data via a call list supplies all
four components of the vector, and the magnitude of output vectors
are always returned through the call 1list output vectors. If the
user eilther dimensions his vectors by three, or if he does not
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wish to supply magnitudes of all input vectors, then it is
necessary to modify the statements in Subroutine MITC@N which
transfers data from call 1list vectors and the common block vec-
tors. The magnitude can be computed at this time so that all
vectors in the common block which are input quantities will
contain the magnitude in the fourth position.

Automatic printing of descriptive error messages and
of pertinent variable values has been included at necessary
points within the subroutines. In addition special printing
request flags for printing of the iterations within Kepler and
Lambert subroutines are included. These request flags are
described in Appendix B under the entry point WSPNT#% FC@PY.

A subroutine which prints the current value of all
variables contained 1in the common block /CC@NIC/ has also been
written. This printing is 1nitiated by a CALL MITPNT. This
subroutine, which 1s listed in Appendix E, 1s valuable for
diagnostic checks should unexplained problems be encountered in
using the conic subroutines. Subroutine MITPNT can be called
elther from the user's program after a return from a conic sub-
routine, or by means of an edit at various points within a conic
subroutine.

Listings of the conic subroutines are contained in
alphabetical order in Appendix F through Appendix P.

V. Supplementary Programs Required

All variable values during diagnostic printing are
written by means of an output namelist program. The namelist
routine NLPUT is contained in the UNIVAC system and is auto-
matically included whenever its use is required. However, the
author uses a special version of NL@UT developed by Miss P. A.
Whitlock (2014) which prints six variable values per line of
output. Since the system routine prints one to four values per
line, a considerable reduction is achieved in output lines of
print by using the special version of NL@UT. Instead of using
NLZUT one could change to FORTRAN format statements.

Use 1s made of a package of vector-matrix function
routines (Reference (9)) in the FORTRAN coding for the conic
subroutines. The user will require either a binary deck of
these routines (available from the authors) in order to use the

routines in their present form, or replacement of the calls with
their equivalent FORTRAN statements.

The Initial Velocity Subroutine has a call to a pre-
cision integration subroutine. In the GSOP, the Initial Velocity
Subroutine calls the coasting integrating routine, which is an
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Encke integration package. The FORTRAN statement CALL EINTEG=---
in the Initial Velocity Subroutine calls the authors' version
of the GSOP coasting integration package. The user must either
remove the Initial Velocity Subroutine or add a precision inte-
gration package.

VIi. Logic Problems

All of the conic subroutines have been tested exten-

sively and results compared with test data obtained from MIT(7)(8).
Problem areas related to programming logic are described below 1in
this section. Section VII discusses computational difficulties

and numerical accuracy.

The only logic problem encountered during the test was
the iterator logic for the Kepler subroutine. The Kepler sub-
routine has two features to insure rapid convergence but these
two features can also prevent convergence to a correct solution
if the user is not aware of the way in which the Kepler subroutine
performs the iterations.

The iteration variable in the Kepler subroutine is X,
In order to insure rapid convergence, the value of X is confined
during the iteration steps to limits of XMIN and XMAX which are
computed initially in the Kepler subroutine as XMIN = 0. and
XMAX = 2n/SQRT(ALP) or XMAX = SQRT(50./-ALP) depending upon the
sign of ALP (the second equation applies to a hyperbola). If
the computed values of XMAX exceed a preset value XMAX{@, the sub-
routine sets XMAX = XMAX¢@, the upper 1limit on the value of X which
may occur under normal usage of the Kepler subroutine.¥

During the iteration steps, the limits on X are changed
according to the direction in which X is to be changed. If the
next change in X is to reduce its value then XMAX is set equal
to X and then X is reduced for the next iteration step. Likewise,
if the next change in X will increase its value, XMIN is set
equal to X before X is changed. At no step during the iteration
is X allowed to go outside these limits, and the limits are always
changed so as to yield a narrower range.

¥The agbove 1limits XMAX and XMIN are for positive transfer
time. For negative transfer time the program computes the limits
as above and then changes the limits to

XMIN -XMAX
XMAX 0.

The remainder of this section is equally appllicable for the case
negative transfer time.
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The initial guess for the value of X and of DELX
(the change in X) are computed from a user-supplied value
XINIT and the previous solution obtained by the Kepler subroutine
given by T21P and XP. The use of the previous solution and an
initial guess XINIT provides rapid convergence for the case
where repeated calls are made to advance a state vector, as
is done with the Encke integration method.* The Kepler sub-
routine would still converge if XINIT, T21P and XP were all
zero; however, extra iterations could be required.

The user must be careful when successive calls to the
Kepler subroutine are made wilth different conics and XINIT, T21P
and XP are not zero., The authors found cases where the computed
value of DELX on the first lteration was in the wrong direction.
This caused the wrong limit on X to be changed with the result
that the correct value of X for convergence lay outside the limits
[XMAX,XMIN]. On the next iteration, the direction of DELX was
computed correctly; however X was now constrained to converge to
one of the limits and could not converge to the correct value.

The solution to this problem is to zero T21P, XP and
XINIT for each call to the Kepler subroutine except for the case
where the subroutine 1s used in conjunction with the Encke inte-
gration method. When used with the Encke integration routine,
the values are also zeroed on the initial call and thereafter the
subroutine is allowed to work in normal fashion. An alternate
solution would be to prevent a change in XMAX or XMIN or the first
iteration step. However, since this would involve changing the
Kepler subroutine, the authors feel the first approach is the
better solution.

The Kepler and Lambert subroutines both use a linear
iterator. The new change in X is computed from the previous change
in X as

DELX = DELX#(TD-T21)/(T21-T21P).

If the change in T21 is approximately linear with changes in X
then there are no problems. However, one test case with a highly
eccentric (ECC = 0.9999) eliptical conic required seventy-eight
iterations to converge because of the highly non-linear relation
of T21 to X. The initial values of T21P, XP and XINIT were all
zero for this test. The 1terator caused the value of X to
oscillate between the two limits, graduately reducing the limits
until the correct solution was finally obtailned.

¥See Reference (1) page 5.2-12 for a method of computing
XINIT.
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It should be noted that the linear iterator will
converge to the correct answer but a large number of iterations
may result for some conics. Generally, all test cases converged
rapidly to a solution; if the user encounters problems with
excessive number of iterations it will be necessary to investi-
gate use of a different iteration technique.

If the requested transfer time is larger than one
orbital period, the Kepler subroutine subtracts multiples of
the orbital period and solves the transfer problem for a time
less than one orbital period. A negative desired transfer (TD)
time up to one orbit will update the state vector backward in
time. However, for larger negative values a wrong answer will
result, corresponding to a backward update of exactly one orbit,
which except for round-off errors is equivalent to the input
vectors. This error was intentionally included to agree with
MIT's model.

VII. Test Results and Numerical Difficulties

Test data have been obtained from MIT(7)(8) and com-
pared to results from the authors' version of the conic subroutines.
MIT ran their test cases with two verslions of the programs. The
first is the on-board program using the Apollo Guidance Computer
(AGC) and the second is an IBM 360 program (MAC).

The AGC is a fifteen-bit fixed-peint word machine with
one bit reserved for sign.*® Most of the computations are performed
in double precision which results in a twenty-nine bit, fixed-point
word with one bit reserved for sign. Time in the AGC i1s in double
precision and the computations within the DELTII subroutine are
performed in triple precision.

The MAC program is in double precision on the IBM 360.
The double-precision word on the 360 has sixty-four bits of which
nine bits form the exponent and sign, and fifty-five bits used
for the fraction. The IBM manual specifies that the double-
precision word has seventeen decimal digit accuracy. The 360 1is
a floating-point machine.

The UNIVAC 1108 version of the conic subroutines has
been programmed in single precision. The 1108 word is floating
point with nine bits for exponent and sign, and twenty-seven bits
for the fraction. This results in eight decimal digit accuracy.

¥A sixteenth bit is used for parity.
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Two distinct computational problems exist within the
conic subroutines. The first problem is word length. For
example, consider the Kepler subroutine iteration variable X
and the resulting Kepler time solution T21. The object 1s to
iterate on X until a value is found for which the resulting
solution T21 is equal to (or close to) the desired transfer
time TD. For some test cases (particularly a high energy
hyperbolic conic) a progression of 1 bit increments in X pro-
duces erratic changes in T21l. The erratic response is due in
part to subtracting two large numbers in the computation of
T21 for a hyperbole. The effects are two-fold. TFirst, a
change of one digit in X sometimes produces a more than one
digit change in T21, which may make it impossible to achieve
exact convergence to TD. Second, the derivative of T21 with
respect to X, determined by differencing the input and output
values, behaves badly for small increments, preventing rapid
convergence. Indeed, exceptional cases were observed where
the apparent slope had the wrong sign, in violation of the
known monotonic functlon. The solution to this problem is
to carry more significant digits by means of double precision.

The second computational problem is that of correctly
computing the two transcendental functions CZTA and SZTA. The
AGC routine uses a ninth-degree Chebyshev polynominal approximation
to the infinite series form for those functions. Even when the
Kepler subroutine converges exactly to the desired transfer time
TD, the computed final state RT2 and VT2 may be incorrect because
of the approximations used to compute CZTA and SZTA. This problem
is not a direct consequence of word length but rather of the
approximate form used.

Four methods were examined to determine the best way
of handling these problems to gain numerical accuracy:

1. Single precision computation using the DELTII sub-
routine shown in Appendix G.

2. Number 1 with the variables Cl, C2, X, DELX, CC@EF
(1-10), SCZEF (1-10), T21, ZTA, ALP, CZTA and SZTA
as double-precision variables. This results in
double-precision computations within the DELTII sub-
routine.

3. Single-precision computations using the infinite
series summation to compute CZTA and SZTA. This
subroutine is shown in Appendix Q.

4, Number 3 with the variables Cl, C2, X, DELX, ALP,
ZTA, T21, CZTA, SZTA, and all variables of DELTII
subroutine in double precision. Thus the DELTII
subroutine of Appendix Q also performs all computa-
tions in double precision.
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Typical Kepler test cases involving different types
of conics from circular to high energy hyperbolic were tested
for all four methods. Each test result was compared to both the
corresponding AGC and the MAC results. For most test cases,
the AGC and MAC results agree to five or six significant digits.
The results of the 1108 tests for each of the above tests can be
summarized as follows.

Method 1: The 1108 solutions for circular conics
and low-eccentricity elliptical orbits agreed with the MAC
results to one or two more significant digits than did the AGC.
For high-eccentricity elliptical conics and hyperbolic conics the
1108 solutions were at worst one significant digit less accurate
when compared to the MAC than the AGC. One exception was a
high-energy hyperbolic conic trajectory for which the 1108 results
agreed with MAC to only two significant digits, while the AGC and
MAC agreed to five significant digits.

Method 2: Use of double precision did not significantly
change the 1108 solutions and resulted in no improvement relative
to the MAC and AGC results.

Method 3: With one exception these test results were
not significantly different from those of Method 1 and resulted in
no improvement in relative accuracy. The exception was the high-
energy hyperbolic conic., Test results for this conic were as good
as the AGC and for some components of positlion and velocity were
one significant digit better compared with the MAC,

Method L4: Use of double precision and infinite series
computation of CZTA and SZTA produced no significant changes in
the results of Method 3, and no improvement in the relative answers.

The conclusions drawn with respect to numerical accuracy
are:

1. The single precision 1108 conic subroutines provide
accurate results if the user expresses RT1, VIl and PMU
as single-precision variables.,.

2. It would be better to compute CZTA and SZTA using
their infinite series form; however, in the majority
of the cases the Chebyshev polynomials are adequate.

The Lambert subroutine was tested with the same type
of test cases as used for the Kepler subroutine., Only single-
precision versions of the Lambert subroutine were tested, but
separate tests with both versions of DELTII were used. The
results were as described in Methods 1 and 3 above, and the same
conclusions with respect to numerical accuracy apply.
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Testing of the other conic subroutines resulted in
solutions that are consistent with the Kepler and Lambert tests,
and the same concluslions with respect to numerical accuracy

apply.
Gu‘jg /‘
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APPENDIX A

DESCRIPTION OF VARIABLES USED IN CONIC SUBROUTINES

VECTORS
Nomenclature Description

Bellcomm GSOP

EVEC(1-4) e vector directed towards apocenter or
pericenter of orbit, defined by RT1 and
VI'l, with magnitude equal to eccentricity
of conic defined by RT1, VIl. The angle
from EVEC to RT1 measured in the direction
of travel (according to VI1l) is between
0. and 180. degrees. EVEC is used by
Time-Radius subroutine.

!

RTT2P(1-4) gT(tz) position vector resulting from pre-
clision integration of initial pesition
vector RT1 and initial velocity vector
VIl in Initial Velocity subroutine.

RTT2(1-4) ro(t,) a vector used for temporary storage of

' desired target position vector in
Initial Velocity subroutine.

RT1(1-4) g(tl) initial position vector.

RT2(1-4) r(t2) terminal vosition vector.

TSKEP(1~-4) - temporary storage vector used in Kepler
Subroutine.

UEVEC(1-4) U, unit EVEC.

UN(1-4) Uy unit normal vector in the direction of
the angular momentum vector.

URT1(1-4) Upq unit initial position vector.

URT2(1-4) Yo unit terminal position vector.

UvT1(1-4) U,q unit initial velocity vector.

UvT2(1-4) Uyo unit terminal velocity vector.

|
VIT2P(1-4) XT(t2> velocity vector associated with

RTT2P.



Appendix A (Continued)

Nomenclature

Bellcomm GSOP

VT1(1-4) v(t
VT2 (1-4) v(t

GENERAL VARIABLES

GV1(1-4) -
GV2 (1-4) -

ISTATE —-—

TIME1 -

TS1 -—
TS2 -
TS3 -
TS4 -

CONIC VARIABLES

ALP a

ALPN o

C@SF -
C@SF2 _—
CgTT@2 --
CTHETA -

ECC e

Description

initial velocity vector.

terminal veloclity vector.

vectors used in intermediate cal-
culations as required.

an indicator carried into Initial
Velocity subroutine for call to Encke
integration package. This indicates
to the integration package which
gravity model should be used.

a variable carried into Initial
Velocity subroutine for call to Encke
integration package. TIME1l is the

time since zero time and is used in
conjunction with computations requiring
ephemeris data within the integration
subroutine.

variables used in intermediate cal-
culations for temporary storage.

reciprocal of semi-major axis
(negative for hyperbolas).

ratio of magnitude of initial posi-
tion vector to semi-major axis
(negative for hyperbolas).

cosine of F.

(cosine of F) #¥2

cotangent of THETA/2.

cosine of THETA.

eccentricity.
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Nomenclature Description
Bellcomm GSOP

F f angle from apocenter or pericenter to
RT2 measured in direction of motion so
that F is between 0. and 180. degrees.

GAM Y inertial flight path angle measured
from vertical (0 < y < 180 deg).

HA hA altitude at apocenter.

HP hP altitude at pericenter.

PN Dy ratio of semi-latus rectum to magnitude
of initial position vector.

RA ry radius of apocenter.

RP rp radius of pericenter.

SINF - sine of F.

SINGAM -- sine of GAM.

SQRPN - square root of PN.

STHETA - sine of THETA.

THETA 8 true anomaly difference between RT1
and RT2.

TP tP period of conic as defined by RT1
and VT1.

CONSTANTS

CCPEF(1~-10) -- contains the Chebyshev coefficients
for the 9th degree polynomial
approximation to the C-transcendental
function's infinite series solution.

COEFGX(1-6) - contains the Chebyshev coefficients

for the 6th degree polynomial
approximation to the infinite series,
for evaluating the value of XN in the
Universal Variable subroutine.
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Nomenclature
Bellcomm GSOP
C@TMN -
CPTMX -
IM@@N PC
MITKEP -
MITLAM -
PMU U
RB rb
RMAX MAX
SCZEF(1-10) --
SG sG
SRR Sﬁ
SQRPMU -

L -

Description

value of cotangent of 1 deg

Used in Lambert subroutine t
the initial guess as to the

C@TMIN.

value of cotangent 178 deg 7
Used in Lambert subroutine t

47.5 min.
o limit
value of

2.5 min.
o limit

the initial guess as to the value of

C@TMAX.

=1, Moon is attracting body,

=0, Earth 1s attracting body.

maximum number of iterations
in Kepler subroutine.

maximum number of iterations
In Lambert subrcutine.

allowed

allowed

product of universal gravitational
constant and mass of the primary

attracting body.

radius of attracting body.

the radius of apocenter is not defined

for parabola or hyperbola so

it is set

to RMAX in Apsides subroutine.

contains the Chebyshev coefficients
for the 9th degree polynomial

appreximation to the S-trans
function's infinite series s

a value of either +1. or -1.
to whether the true anomaly
between RT1 is respectively
or greater than 180 degrees.

a value of either +1. or -1.

cendental
olution.

according

difference
less than

according

to whether the desired radial velocity

at RT2 is resvectivelv plus
in Time-Radius subroutine.

square root of PMU.

or minus
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Nomenclature Description
Bellcomm a30P

XMAX @ XMAXO absolute upper bound on Kepler
iteration variable X set according to
the attracting body.

FLAGS

IF1 f a switch set to 0 or 1 according to
whether a guess of cot y 1s availlable
or not (=0, guess is available).

IF2 f2 a switch set to 0 or 1 according to
whether Lambert should determine

uy from r(t,) and r(t,) or uy, is an

input.

IF3 f a tag set to 0 or 1 according to whether

the iterator should use the "Regula

Falsi" or bias method.

IFY fh a flag set to 0 or 1 according to
whether the iterator is to act as a
first order of a second order iterator.

1F5 f a flag set to 0 or 1 accordine to
whether a feasible solution exists
or not.

IF6 f6 a switch set to 0 or 1 according to
whether or not the new state vector
is to be an additional outoput require-
ment of the Time-Theta or Time-Radius
problems.

1F7 f a flag set to 1 1if the Inputs reaguire
7 that the conic trajectory must close
through infinity.
IF8 f8 a flag set to 1 if the Time-Radius
problem was solved for pericenter or
apocenter instead of r(t,).

IFQ f a flag set to 1 if the input to the
Time-Radius subroutine produces an e

less than 2_18.
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Nomenclature
Bellcomm GSOP
IFC@GA f'Y
IFN1 ny
IFW bl

w
IPKEP -
IPLAM --
IPTKEP -
IPTLAM -

ITERATION VARIABLES

A —_
CK k

Description

=1, C@TGAM not 1in range (1° U47.5',
175° 12.5")
=0, C@TGAM is within range

=1, Lambert returns VTl and C@TGAM
=0, Lambert returns VT1l, VI2 and C@TGAM

a flag set to 1 in the Universal
Variable subroutine if 6 is nearly
less than 360°, in which case the Xy

corresponding to 360°-8 is calculated
and subtracted from the Xy corresponding

to 360° exactly.

flag used to test for reaguired printing
of an iteration step in Kepler sub-
routine.

flag used to test for required printing
of an iteration step in Lambert sub-
routine.

flag set to 1 if Kepler subroutine does
not converge within maximum number of
iterations. The subroutine then
reinitializes itself and prints the
iterations as they are performed.

flag set to 1 if Lambert subroutine does
not converge within maximum number of
iterations. The subroutine then
reinitializes itself and prints the
iterations as they are performed.

temporary iteration variable used in
Universal Variable subroutine.

a fraction of the full value of the
full range of the independent variable
which determines the increment of the
independent variable on the first pass
through the 1terator in Lambert sub-
routine.
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Nomenclature
Bellcomm GSOP
C@SGAM cosy
C@TGAM coty
C@TMAX cotymax
C@TMIN cotymin
CZTA c(g)
C1l c1
ce 02
C3 03
DCATG coty
DELX AX
EPSK
EPSL “t

Description

cosine of GAM.

contangent of GAM - this is the itera-
tion variable in the Lambert subroutine.

upper limit for the value of C@TGAM
during iterations in Lambert subroutine.

lower limit for the value of C@TGAM
during iterations in Lambert subrotine.

value of the C-transcendental function
(with argument ZTA) as used in the
universal form of Kepler's equation.

a constant used in computing T21 in

the universal form of Kepler's equation.
Cl is computed as either (RT1 (dot)
UT1/SQRPMU) in Kepler subroutine or as
SQRT (PN*RT1(L))*C@TGAM in Universal
variable subroutine. These are
equivalent computations.

a constant used in computing T21 in

the universal form of Kepler's eqguation.
C2 1s computed as RTI1(4)#VT1(L)*%D2/
SQRPMU -1. in Kepler's subroutine or

as 1.-ALPN in Universal Variable sub-
routine. These are equivalent
computations.

a constant computed as RTL(Y)*¥VT1(L)*%*D/
PMU.

increment in X which will produce a
smaller value in TERR. DELX is used
to change the iteration variable
CZTGAM in Lambert subroutine.

increment in X which will produce a
smaller value in TERR. DELX is used
to change the iteration variable X
in Kenler's subroutine.

fraction which when multiplied by the
desired transfer time willl yield the
error allowed in the solutlons within
Kepler and Lambert subroutines. EPSK
1s used in Kepler subroutine and EPSL
is used in Lambert subroutine.
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Nomenclature
Bellcomm GSOP
EPSINV €
EPSKEP -
EPSLAM -
IDELT -
ITGETX -
ITKEP 1
ITLAM i
N1 nl
N2 n2
OMEGA w
P1 Pq
P2 Py
SZTA s(g)

Description

cone angle of a cone whose vertex

is the coordinate origin and whose axis
is the 180 degree transfer direction
(1.e., the negative initial position
vector). This 1s used in Initial
Velocity subroutine to determine if
transfer is too close to 180 degrees
and hence the target vector must be
rotated into the orbital plane.

absolute value product of EPSK and TD
computed once in Kepler subroutine to
use in test for convergence.

absolute value produce of EPSL and TD21
computed once in Lambert subroutine to
use in test for convergence.

iteration counter in Kepler Equation
subroutine.

iteration counter in Universal Variable
subroutine.

iteration counter in Kepler subroutine.
iteration counter in Lambert subroutine.
number of iterations to be used in
calculation the offset target vector

in Initial Velocity subroutine.

iteration counter in Universal Variable
subroutine.

cosine of EPSINV.

constant used within Lambert subroutine
computed one time only as CTHETA-ZLAM.

constant used within Lambert subroutine
computed one time only as CTHETA-ZLAM.

value of the S-transcendental function
(with argument ZTA) as used in the
universal form of Kepler's eauation.
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Nomenclature Description
Bellcomm GSOP

TD tD desired transfer time through which
the conic uvndate of the state vector
is to be made (used in call to
Kepler subroutine).

TD21 tD21 desired transfer time to traverse
from RT1 to RT2 (used in call to
Lambert subroutine).

TERR tERR error between desired transfer time
(either TD or TD21) and solution
given by Kepler's equation (T21) for
current value of iteration variable.

TR tR integral periods subtracted from TD
to produce a TD less than TP in Kepler's
subroutine.

T21 t21 transfer time as given by solution to

universal form of Kepler's eqguation.

T21P t transfer time corresponding to the
21 . . ' .
previous solution to Kepler's eaquation
assoclated with iteration variable
value XP.

W1l w1 temporary iteration variable used
in Universal variable subroutine.

W2 Wy temporary iteration variable used
in Universal variable subroutine.

W3 w3 temporary iteration variable used
in Universal variable subroutine.

X X a universal conic parameter equal to
the ratio of eccentric anomaly difference
to SORT(ALP) for an ellipse or the ratio
of the hyperbolic analogue of eccentric
anomaly to SQRT(-ALP) for a hyperbola.

XINIT XINTT initial guess for value of X for call
to Kepler subroutine.

XMAX X upper 1limit for value of X during

iterations in Kepler subroutine. A

new guess for X is not allowed to

exceed MAX.

MAX
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Nomenclature
Bellcomm GSOP
XMIN XMIN
XN XN
XP x!
XR XR
X2 -
X2CZTA -
X3 -
ZLAM A
ZTA g

10 -

Description

lower 1limit for value of X during
iterations in Kepler subroutine. A
new guess for X 1is not allowed to be
lower than XMIN.

ratio of X to magnitude of initial
position vector (RT1(4)).

value of X used for previous Kepler's
equation solution (see TP).

value of X associated with TR.

X*%2

X2¥CZTA

X#%3

ratio of magnitude of initial
position vector to final position
vector (RT1(4)/RT2(L4)).

argument of transcendental function

in the universal form of XKepler's
equation.
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COMMON BLOCKS FOR CONIC SUBROUTINES

APPENDIX B

COMIC*x FCOPRPY
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THIS COMMON BLOCK IS USED INTERNAL TO THE MIT CONIC SURRAUTINFS

COMMON/CCONIC/
vT2(4)
UVT2(4)
GAM,
153

SGo

PMU»

R3
FPSK
RPy

T21,
CCOEF(101)»
INELT
XN

W1l

Ay

ALPy
TERR
XINIT,
CKre
TSKEP (4}
IPKEP
T21¢
CNTMAX
EPSLAM,
IFSy
IPTLAM,
X3
ALPN»
COTGAM,
HA»

SRRy
IFS
THETA»
IF7,

N1
ISTATE »
RTT2(4)

FND

RTL(4)
URT1(4)
GV1(4d
T51,
TS4H

For
SGRPMU,
COTMX
EPSL
RAr
SZ2TAr

SCOEF(10)

X2

IFW,

XPo
DELX»
XK

Cle
MITKEP,
IF4,
DCOTG
COTMIN,
IFl,
IFN1

PN

Ca

HP»
EvVEC(4)»
COSF»
STHETA»
IFCOGA
N2
TIMEL,

VTL(4)
URTZ2(4)
Gve ()
TS2
EPSy

X
XMAXO,»
COTrty

FCCo
X2CZTA»
wWee

ZTA»
ITGETX

TD21»
XMAX »
TR
Cer»
ITKEPR,

MITLAM,
P1.,
IF2,
ITLAM,

COSGAM)y
SQRPM

UEVEC(4)»

COSF2»
CTHETA»

OMEGA

RTT2P(4)

RT2(14)»
UvTLi(4) .,
UNM(4)Y

RMAX »
IMOONY

CZ2Tnh,
W3,

COTTNn2,

COEFGX(6) s

TD
XMIN,
TP
EPSKFP,»
IPTKFP,

ZLAM,
P2y
IF3,
IPLAMYy

SINGAM,

IF8,
SINF,
IF6,

EPSINV,

VIT2P(4),
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wCont FCOPY

C
C k¥ COMMON QLOCK FOE UNIVERSAL CONSTANTS AND CONVERSION FACTORS.
C NToR COMVERSION FROM DEGREES TO KADIANS (0,0174532925)
c TGO CONVERSION FROM RANIANS TO DEGREES (57.2957796)
C HALFP T PI1/2.(1,57079633)
C 20| RADIANS IN HALF CIRCLE (3.,14159265)
C THPT 2.%P1 (p.28318531)
C HROAY HOURS I A DAY (28.)
c SECDAY MUMBER OF SECONUS IN A DAY (86400.)
C SECHR MUM3ER OF SECONDS Id AN HOUR (3600,.)
C SIXYTY THE NUMBER SIXTY (H0.)
C WGCIR MUMSBER CF DEGRECS IN A CIRCLE (360,)
C FThM MUMBER OF FEET IN A NAJTICAL MILFE (6076.1155)
r TTVT MUMBER OF FEET IN A METER (1./0.3048)
C 1T MO AN BIG NUMBER (l1.E30)
C SHLND A SMALL NUMBER (1.E=37)
C 37ERO ACCELFRATION OF GRAVITY AT SURFACE. THIS CONSTANMT IS USEN
C TO COMVERT WEIGHT TO MASS WITHIN THE PROGRAWM,
C
crn
RACOHIx FCORY
c THIS COYMON BLOCK CONTAINS UMIVERSAL CONSTANTS AND CONVERSIOM
C FACTORS REQUTIRED RBY THE PROGRAM,
c
COMMON/CCON/ DTOR RPTOD» HALFPI,
« PRIy TwOPI» HROAY » SECDAY
e SECHM SIXTY» DEGCIRY FTN
o« FTMT, BIGMNO SMLND GZERN
C
YATA DTOR/U.0174532925/ RTOD/57.29577967/¢r HALFPI/1.57070633/
e PI/3.141592657/r TWOPI/6.28318531/ HIDAY /2479 SECDAY/860u00.70
e SEFCHP/AD/r DEGCIR/36047/9r FINM/6076.1155/9 FTMT/3.28n8399/»
e ATGNO/1.F30/7r SMLNO/L1.E=37/» GLER0O/32.174048/7
C

e N
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THIS COMMON BLOCK CONTAINS SPECIAL PRINT INDICATORS AS 3FQUIRED
FOR «PECIFYING ;-TINTING WITHIN THE SURROUTINFS,

JPKER

JPTKEP

JPLAM
JPTLAM

FHn

SPNTx FCOPY

=N, PRINT EVERY N=TH ITERATION IN SURBROUTINE KEPMIT,
=0,00 NOT PRINT ITERATIONS IN KEPMIT, SEE ¢JPTK:Pr,
=0,PRINT STARTING VALUES AND SOLUTIOMN IN SURROUTTINE
KEPMIT [F SURROUTINE DOES NOT CONVERGE WITHIN MAXIMijwm
ALLOWABLE NUMBER OF ITERATIONS, =NyPRINT EVERY M=TH
ITERATION IN KEPMIT IF SUBROUTINF DOES MNOT CONVFRGE TO
AN ANSWER

(SIMILA,: TO JPKEP EXCEPT FOR SUBROUTINE LAMMIT)
(SIMILAR TO JPTKEP EXCEPT FOR SUBROUTINE LAMMIT)

COMMON/CSPNT/

« JPKEDP,

D

JPTKEP, JPLAM, JPTLAM,
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FORTRAN NAMES FOR THE CONIC SUBROUTINES

Conic
Subroutine

Kepler

Lambert
Time-Radius
Time-Theta

Apsides

Conic Parameter
Universal Variable
Kepler Equation
State Vector
Initial Veloecity

Pericenter-Apocenter

Calling Name for

Data via
Common Block

Calling Name for

KEPMIT
LAMMIT
TRADI

TTHETI
APSIDI
PARAMI
GETXI

DELTII
NEWSTT
INITVI

PERAPI

Data via Call List

KEPMIT
LAMMIT
TRAD

TTHETA

INITV

PERAPY
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APPENDIX D

SUBROUTINE MITCON - THE BUFFER SUBROUTINE

SUBKOUTINE 4ITCQOY

TH1L SUBROUTINE COMTAINS THL CALL LISTS FOR THR MIT COMIC SUROCUTUIIES.
ACTUAL CALLS TO Tiid CONIC SURRUUTINES ARE MANE gY THIS SUBKOUTIME
AND VARIABLES ArRE CARRILD VIA COMON TO THE £OMIC SURROUTINES.

ICUGDY

K1(1=4)
Vi(i=4)
Re(l=4)
V2(l=u)

INCLUDE GCONIC
INCLUDE oCOil

INDICATUR =1MOOH IS CENTRAL S0NnYe =2 EARTH IS CENTRAL
BOLY

INITIAL POSITION

INITIAL VELOCITY

FILiipl POSITION

FInaLl VeLOCILTY

V1IR(1=4)VELOCITY REwUlIRgl AT R1 TO ARKRIVE AT R2

IDEY DESIRED TRANSFDi TIMD FOR rL TO p2

ZTHETA  IRUR ANUMALY DTIFFCRENCE RETWEER R1 AMD R2

MIFo 1NUiCATUR =0 OFR 1 ACCCRDTNG TO WHETHER OR NOT THF NLW
STATE SHOULD BF COMPUTED 1% TIME-THETA SUBROUTIME

ZALEN RATIC OF MAGNITUDE OF INITIAL POSITION TO SEMI-MAJOR AX1S

Z7121 REQUIREL TRANSFL™ TIME FR04 R1 TO R2

R2G MAGINITULE OF FIHAL POSITTON

ZHP HETIGHT AROVE PLANMET AT PIRICENTFR

2P KATLO OF SEMI=-LATUS ROCT'IM TO MAGNITUNE OF IMITIAL
POSLTION

PMUC PROUUCT OF UNIVLERSAL GRAVITATIONAL CONSTANT AND MASS OF
PRIMARY ATTRACTING HODY

ZXINIT  INITIAL GUESS AS TO VALUT OF X FOR CALL TO KEPLER

GCOT16 INITIAL GUESS TO VALUE 0OF COTGAM  FOR CALL TH LAMPERT
(MUST BE ZERO IF A GUESS 1S NOT AVAILABLE== THE SOLUTIOIL
OBTAIMNED IN LAMBFRT IS RFTURKELD)

ZSKK INPUT EQUAL TO +1. GR =1. DEPELDING UPON WHETHER RT2 AS
DETLRVINED GY TIME=RANIUS SURROUTINE HAS A
POSITIVE OR NEGATIVE RADIAL RATE

ZeCC ECCENTRICITY OF ORRIT KT1»VT1 (QUTPUT OF CONIC SURROUTINE)

1vc INDICATOR CAPRPRIED INTO IMITV SUBROUTIME FOR USF IN CALL TO
PRECISIOM INTEGKATIONM PACKAGF

NOSE.TZ HNUMRBER OF OFFSET ITERATIONS TO RE PERFORMED IM INITV SURROUTINE

R2CSET  THE OFFSET TARGLT VECTCR OUTPUTTED RY INITV

2EPS HALF CONE ANGLE. IF ThHE TARGET VECTOR LIFS WITHIN ZEPS
DEGREES OF 180 DEGRELC TKANSFER FOR CALL TO INITVT,
THEN, THE TARGET IS ROTATED INTO PLANE FCRMED BY R1-Vl1.

IFLAG FLAG IS SET TO 1 IF TARSET VECTOR WAS ROTATED

INTY PLANE QUE T0 ITS5 PRAXIMITY TO 180
DEGREES IN INMITVI. OTHERWISE FLAG IS SET TO 0.

ENTRY POINT TO INITIALIZE COMIC ROUTIHE. MUST RE CALLED ONCE

BEFORE USING ANY OF THE CONIC ROUTINES AND THERE AFTER THE ENTRY
POINT MUST pE CALLED ONLY IF THE CFENTRAL BODY CHANGES
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ENTRY MITINIC(ICLODY)

ESTaLISH COlsTANTS ACCORDING

CENTRAL

CEMTRAL

COIWVERGELNCE CONSTANT FOR KEPLER

GO 10(1010102) v ICKHOLY
LoDy IS MOOi

IMOUNZ1

KMAXZ1 0&’_;’7
EMIpN=35000.
FB3zZL70239%.02¢ £
XvaxO=1l.t106

GC TO 1a0

FODY 1S EARTI
IvGuti=o
RYAR=1.0.29
KMIN=S1o463.8
F3=2002%738.22
X¥MAXOz1,.E17
UN(y)=1.
URT1(4)=1,
UvtTi(y)=1.
URTz{4) =1,
Uvie(u)=1.

a3

EPSK=1.c=8

TO CERNTRAL RODY

1738409 Kwm

3 63784165 KM

SUARNUT INE

CONVERGEMCE COMSTANT FOr LAMPERT SUJROUTINE

MAX AND

EPSL=1.E-8

MIiN VALUES FOR COT(GAM)

COTmX=31.2843711 in
R COT(5AM) FOR GAM=

COTMN==COTMX

KETURMN

COT(5AM)

FOR GAM=178 DFG 12.5
1 DEG 47.5

DIMENSION RL(4)oVI(4) P R2(4)9V2LY)rVIR(L4)»R20SET(4)

«x¥x KEPLER EMNTRY POLNT

ENTRY KEPMIT(R1/V1/TDES»PMUCRPIXINITIR2,V2)

MIN
MIN
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C IF TDES=0. THEN RETURN INPUT STATE
IF(ABS(TDES) «6T,.0.)60 TO 50

b (R}

SET UP

eNeNel

2
C
C

C #x*x LAMUBERT
C

CO 1 K=z1le4
R2{k)=R1(K)
V2 {k)=V1(K)
ZXLNIT=0.
RETURN
COnNTIMNUE

COMMON

0O 1 K=lr4
RTL(K)=x1(K)
VIL(K)I=ZV1(K)
TO=10ES
PMUZPMUCKH
SURPMUZSERT (PMU)
XINIT=ZXINIT

CALL KEPMII
D0 2 K=1.4
Re(n)=RT2(K)
V2 (K )=VT2(K)
ZXINIT=XINIT
RETURRN

ENTRY POINT

ENTRY LAMMIT(K1»VI/R22TOFES»PHMUCB,GCOTGIVIRIV2)

PMUZPMUCH
SQRPMUZSERT (PMU)
DU 3 K=1+4
RTL(K)=R1(K)
RT2(K)Y=Rz (K)
TLz1=TDES

VALUE OF S6 FROM

o
3

C

C COMPUTE

C

C

C MAGIITUGE »
C

INPUT RT1evT1le AND RT2,

NOTe==V1 IS USEL OWNLY TO CFTERMIME DIRECTION OF MOTION
HERE « TiiUS IT DOES NCT HAVE TO BT CORRECT IN

UN(1)=VCROSU(RT1 V1)
GV1(1)=VCROSUW(RT1/RT2)

56=1.

IF(VOOT(UMNIGVL) LT 0.) 561,
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IF INITIAL GUESS OF COTGAM IS AVAILARLE
THEN CLEAR 1F1 FLAG

COTLAMZGCOTS

1Fi=1
IF(AUS(COTOAM) o GTL0.,)IF1=0
CALL LAwrII

DO & K=1»4

VIR(K)=VT1(K)

V2(Kk)=VT2(K)

GCOT1G=COTGAM
IF(1F5.CGs0)RETURN
WRITE(6¢27)

FORMATC v LAMMIT HAS FAILED TO FIND A SOLUTION v )
CALL MITPNT

RETURN

C sk TIME=THeTA £NTRY POINT

C

C

82

25

ENTRY TTHETA(RL VI ZTHE TA» AIFAePHICT» ZALPN» ZT219R29V2)

THE FAZZTHETA

ST TAZSIN(THETA*DTOR)
CIiETASCOS{THETAXDTOR)
IF6=MIFo

CO 4 K=Z1.4
KTL(K)=R1(K)
VI1(K)=V1(K)

PMUzZPMUCR
SORPMUZSGRT(PMU)

IF(ASS(1le=CTHETA) «53T404)G0 TO 603

THETA Zu. PSCUDO COMPUTATIONS

CALL PArAMI
ZALPHZALPH
LTe1=0.

DO 20 Kz=1ry
R2(K)=RT11(K)
V2(K)=VT1(K)
RETURN

CALL TTHETI

ZALPPHZALFM

2T21=Te1

IF(IFpetRe 1) RETURN

LO 5 K=1.4

R2({k)=RT2(K)

V2(n)z=VT2(K)
IF(1IFCOGAEGs O ANDe IF7.EN. 0)RE TURN
WRITE(6025)

FORMATCY TTHETA FAILED TN FIND A SOLUTIONY)
CALL MITPNT

RETURN

C #x*x PERAPO ENTRY POINT

C
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ENTRY PCRAPO(R1»VL1»PMUCS» ZHP» 2PN ZECC)
DO 6 K=1r4
RTL(K)=R1(K)
6 VI1(K)=v1(K)
PryU=pMuCH
SQRPHUZSORT (PML)

CALL PERAFI
ZHP =P
2Pzl
ZHCLZECL

Re TURN

xx¥x TRAU ENTRY pPOINT

OO0

ENTRY TRADCRLPVIsR2GePMULH P ZSRRYZ2T21,R2,V2)

(@]

0O 10 K=1r4
RTI(K)=Rr1(K)
1, VT1(K)=Vv1(K)
RT2(4)=r26
IFo=0
SKRR=ZSRK
PMUZPMUCRH
SAKPMUZSGRT (PMU)
CALL TRAUI
1212721
DO 11 K=y
R2(K)=RT2(K)
11 V2 {r)=vT2(K)
IF(IFCOGAEQeDANDeIF9.£M.0)RETURN
WRITE(6926)
2 FORMAT( * TRAD HAS FATILEN TO FIND A SOLUTION ' )
CALL MITPNT
RETURN
C
C xxxx INMNITV ELTRY POINT
C
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ENTRY INITV (R1,V19T1eIVCyTOESIR2/MOSETZeZEPSPHICBY VIR,
PROSET IFLAG)

EPSINV=ZEPSADTOR
IF1=1 m INITIAL GUESS OF COTGAM NNOT AVAILABLE
PMUZPMUCH
SERFMUZSSOGRT (PMU)
1STATE=ZLVC
HN1zn0SETZ

TIevipl=T1
TL21=TOcS~TINEL

DO 7 K=1e4
RTI(K)=R1(K)
VTL(K)=V1(K)
RTZ2(K)=K2(K)
RTTe(K)=RZ2(K)
UN(1)=VCROSU(RTL V1)

CALL INITVI

DO 9 K=14
VIR(K)=ZVT1(K)
K2OSET(KI=RT2(K)
IFLAG=ZIF2
RETURM

END
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SUBROUTINE MITPNT

SUBKOUTINE MITPNT
SUBKOUTINE TO PRINT COMMON 8LOCK FOR MIT CONIC SUBRROUTINES

00

INCLUDE
INCLUDE
GAM=0,
F=0,

THETA=O,

AQCONIC
QCON

SATAN2(SINF»COSF) *RTOD
IF(ABS(COSGAM) «GTeUe s OR, ABS(SINGAM) ¢6Te0e)

GAM=ATAN2 (SINGAM, COSRAM) *RYOD

IF(ABS(CTHETA) oGTQOO oORo QHS(STHFTA) 'GTOO.)

THETA=ATANRSTHETA»CTHETA) *HTOD

NAMELIST/NMITSR/ZA ALP, ALPN»
Clo C2» C3» CKo
COEFGX» COSF» COSF2 COSGAM,
COTGAM, COTMIN. COTMN» COTMAX .,
COTMX» COTTO2» CTHETA» CZTA»
DCOTG DELX» ECCy
EPSINVy EPSK» FPSKEP EPSL»
EPSLAM» EVEC, Fo HA»
HP» GAM» G3V1i GV2,
IDELT, IFCOGA. IF1, IF2y
IF3, Y IFSy IF6,
IF7, I1F8: TF9, IFN1»
IFW, IMOON IPKEP Y IPLAM)
IPTKEP» IPTLAM, TTKEP» ITLAM,
ISTATE» MITKEP» MITLAM, N1,
N2 » OMEGA Pl P2y
PMU» PNe A RB»
RMAX» RP» 271, RT2,»
RTT2P KTT2» 5Ge SINF,
SINGAM, SQRPMU, SQARPNY STHETA»
SZTA» T21» T21P» TD»
D21 TERRY THETA» TIMEL,
TP TR TS1, TS2»
TS3» TS4, TSKEP» HEVEC
UN» URT1. RT2, VT1,
UvTe2, A DY) VT2 VTT2P,
Wl W w3 Xe
XINIT» XMAX XMAXOr XMIN,
XN XPy XRe X2
X3 X2CZTA» 7LAM, 2TA

WRITE (6+,NMITSR)

RETURN

END
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APPENDIX F

SUBROUTINE APSIDI

SUBROUTIME APSIDI

SUBROUTINE (APSIDE)
RT1,VT1.PMU
RPeRAPECC

INCLUDE QCONIC

CALL PARAMI @ CONIC PARAMETER SURROUTINE
TWwlz1.~ALPN*PN

ECC:O.

IF(IW1eGT«0.)ECC=SART(TW1)
RP=pPN*RT1(4)/(1,+ECC)

RA=2+%RT1(4)/ALPN=RP

ELLIPTICe PARABOLIC OR SLIGHTLY HYPERBOLIC TRAJFCTORY,

END

IF(kAJLTe0s «ORe RALGTRMAX)RA=ZRMAX

RETURN

SET RAZRMAX
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SUBROUTINE DELTIT

SUBROUTINE DELTII
BATTIN'S TRANSCENDENTAL FUNCTIONS (DELTIM)
INPUT CleC2eX2ZTAWX2sRT1rPMU
OUTPUT T21,S52TAsCZTA»X2C2ZTA

INCLUDE QCONIC

COEFFICIENTS COMPUTED BY HAND FRMM STORFD VALUE AND SCALE FACTOk
DATA CCOEF/ 0.5r =0.41666678F=1» 0,13888883E-2,
“0.s4B01UTBE=Uy 0.27557575€~69 =0,20879193F=1,
0e11466301E-10r =0.47591756F~13¢ 0.15952475E-15
-0.47021409E-18/
DATA SCUEF/ 0.16666668» =0,83333339E-2,  0.19AH1207F=3
~0.275572T72E-5» 0.25052219E-7¢ =~0,16060090E-9,
0.76452305E-12» =0,28027516E=14» 0.83655181E-17»
~0.22099544E-19/

EQUATION VALUE ACCORPING TO TRW (SEE BELOW)

DATA CCUEF/ 0.50000016, =0.0416666800 1.383R8833E=3%
=2.4B014777E-5» 2.75%575727E=7» =2.08791932E-9,
1.14663008E-11» =4,75917536E=14» 1,59524745E=15

»=4.70214090E~19/
DATA SCOEF/ 1.66666668E=1+-8¢23333387E~3, 1,98412673F 4,
~2,75572720E~6 » 2.50522187E~Rr=1.60600899E~10
¢ Te6U523051E-13) -2.£0275162E~-15+8,36551806E~18
1 =2.20095444E=-20/
THEORETICAL VALUES OF COEFFICIENT ACCORDING TO SUNDANCE FROGRAM,
TRW¢NASY=4810,9 SEPTEMBER 1968

DATA CCOEF/0.50 ~0.0416666€E7, 1.388883R0E=3,

=2.48015873E~5 2+75573192€=7 =2.08767570E~G,
1.14707456E-11> -4 77947733 =14, 1.56192070E~16+

-4.,11031762E-19/

DATA SCOEF/ N.1666666679) =8.33333333E-3r 1.98412698E~4,

=2.75573192E~6» 2.50521084E=8,=1.60500U438E=10,
Tepl4T716373E-13) =2.,81145725E-15+8,22063525E-18"
=1.95729411E-20/

S2Ta=0.

CZTn=0.

DO 18 IDELT=10¢2,~1
C2TA=(CZ2TA+CCOEF (IDELT)) #2TA
S2TA=(SZTA+SCOEF (IDELT) ) *ZTA
CZTa=CZTA+CCOEF (1)
SZTA=SZTA+SCOEF (1)

X2=x*X
X2CZTA=X2*C2TA
T21=(C1*X2C2TA+X* (C2xX2xSZTA+RT1(4)))/SGRPMU

RETURM
END
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SUBROUTINE GETXI

SUBHOUTIMNE GETXI

*x*x UNIVERSAL VARTABLE SUBROUTINE (GFTX)

362

370

3ou4

371

INPUT STHETAPCTHETA»COTGAMIRT1 ¢ ALPNeFPH
OUTPUT X»ZTA»CLsC2X2¢IF7

INCLUDE CONIC
INCLUDE OCON

DATA COEFGX/=04333333540,0.200000734,~0,142802172
061110065849 =.094528196,0,0813858408/

IFwW=0 @ USED ONL') IN GETX = =1»360 DEG TRANSFER
SARPN=SQRT (PN)
COTI102=STHETA/ (1.=CTHETA)  COT(THETA/2.)

Wi=(COTT02~-COTGAM) *¥SQRPN
IF(ABS(COTTOR) 6t e 32,)G0 TO 360 M ABS(THETA) JLFe3 DEG 3H MIy
IF(aABS(W1).6Fe32,)60 TO 260

DO 362 ITGETX=1,3

TS1ZALPN+W1*W1

IF(7S1.LT.0.)G0 TO 361 N CLOSURE THRU INFINITY REGD
W1lZw1l+SQRT(TS1)

IF(ABS(W1) .GE«32,)G0 TO 360

CONTIMUE

A=1l,/491
IF(ABS(A) .GE.44)G0 TO 361 R CLOSURE THRU INFINITY REWD
GO TO 3b4
Wl OVERFLOW = CALCULATE A USING RECIPRCCAL FORMULA
CONTINUE
IF(wl,LT.04.0R.COTT02.LT.0.)IFW=1
W2 ABS(STHETA/Z (SQRPN* (1 +CTHETA=STHETA*COTGAM) ))
TS2zwW2%xw2
w3=jg.
DO 370 ITGETX=1.3
TS1=ALPN*TS2+W3*w3
IF(TS1eLT«0.)GO TO 361 2 CLOSURE THRU INFINITY REQUIREL
W3I=SQRT(TS1) +W3
CONTINUE
ASWo /W3

CONTINUE R NOW EVALUATE XN

IF(L.LT.0.)G0 TO 361 7 CLOSURE THRU INFINITY REQUIREL
TS1=-ALPN*A*A

XN=0,

DO 371 ITGETX=6,1,-1

XN= (XN+CQOEFGX (ITGETX) ) *TS1

CONTINUE

XN=XN+1.
XN=16, xA *XN
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372

CLOSURE
361

END

IF(IFWez0.0)GO TO 372 7 =1»THETA NEAR 360 DEG
IF(ALPN.LT.0)GO TO 361 1 CLOSURE THRU INFINITY REGD
XN=TWCPI/SQRT (ALPM) =XN NSUBTRACT XN FROM™ 360 DIGREES
CONTINUE

ZTA=XN*%2%ALPN
X=XN*¥SQRT(RTE (4))

X2=x*X
CI1=SQRT(PN%RT1(4))*COTGAM
C2=) «=ALPN

1IF7=0

RETURN
THRU INFINITY REQD - NO SOLUTION EXISTS
CONTINUE

IF7=1
RETURM
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SUBROUTINE INITVI

SUBHROUTINE INITVI

INPUT RT1oVTL/RTT(2)»TDINL1PEPS»IF1,GCOTG,PMU
OUTPUT RT1eVTTL1sRT2,VTIT2/RTT2P1CNTGAM» IF2

INCLUDE GCONIC
INCLUDE QSPNT

OMEGA=COS(EPSINV)

N2==1

2=0,

DO 1 K=1,3

URTZ(K)=RT2(K)/KRT2(4)

URT1(K)=RT1(K)/RT1(4)

Z=Z+URT1(K)Y*URT2(K)

UN{(1)z=VCROSU(URT1,VT1)

IF2=0

IF(,+OMEGA.GT.0.)GO TO 500 ARTT2 LIES OUTSIDE THE CONE
IF2z1

TSIZRT2(1)®UN{1)+RT2(2) *UN(2)+RT2(3)xUN(3)
GV1(1)=UN(1)x%xTS1

GV1(2)=uUN(2)*TS1

GVI(3)=un(3)*TS1

GV2(1)=vSUBU(RT2,6V1)

RT2(1)=GV2(1)*RT2(4)

RT2(2)=6Vv2(2)*RT2(4)

RT2(3)=6V2(3)*RT2(4)

IF(N2.NE.=1)GO TO 500

RTT2(1)=RT2(1)

RTTz(2)=RT2(2)

RTT2(3)=RT2(3)

GV1(1)=VCROSU(RPT1RT2)

SG=1.

IF(VDOT(UNeGV1) eLTe0,)5G=~1,

CALL LAMMII

IF1=0 RGCOTG IS MNOW AVAILARLE
IF(N1,EQ.O0)RETURN RPERFORM SINGLE CONIC UPDATI-ONLY
CALL EACVNC(TIME1,RT1,TD21+TIMEL,RTT2PeISTATE)
Ne=Nn2+1

IF(N2.EQ.N1)RETURN RHAVE INTEGRATED M1+1 TIMES
RT2(1)=RT2(1)=RTT2P(1)+RTT2(1)
RY2(2)=RT12(2)=RTT2P(2)+RTT2(2)
RT2(3)=RT2(3)=RTT2P(3)+RTT2(3)
RT2(4)=SORT(RT2(1)*RT2(1)1+RT2(2)*RT2(2)+RT2(3)*xRT2(3))
GO 1O 506

END
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SUBROUTINE KEPMIT

SUBROUTINE KEPMII
KEPLER SUBROUTNE (KEPMIT)
INPUT RT1,VT1,TD» XINITeXP»T21P
OUTPUT RT2,VT2+T21¢X

INCLUDE QCONIC

INCLUDE QCON

INCLUDE GSPNT
IF XINIT IS NON ZERO THEN DO NOT RESET XP AND T21P,
OTHERWISE ZgRO THESE QUANTITIES

IF(ABS({XINIT).GT,0)60 TO 300

XP=0.

T21p=0.

CONTINUL

SAVE INPUT yAQRIABLES WHICH ARE CHANGED NURING THE ITERATTION LOOW
TSKEP (1) =XINIT
TSKeP (2)=XP
TSKeP(3)=T21P
TSKERP(4)=TD
IPTKEP=0 @ =0¢DO NOT PRINT FACH ITERATION
IPKEP=JUPKEP
PRINT OUT Cull LIST IF JPKEP IS AREATER THAN O
IF(UPKEP.EQ.0)GO TO 201
WRITE(6,200)
FORMAT( * * % % % KEPMIT IS CALLED WITH THE FOLLOWING ¢
YWALUES % * % % % V)
NAMELIST/NLK4/RTL1yVT1oTDrT21Pe XINIT X XPs»XRs» TR
WRITE(6/NLKY)
CONTINUE
CONTINUE
MITKEP=20 RAMAX NUMBERP ITERATIOMNS ALLOWED
ITKeP=0 WITERATION COUMTER
XR=0.
TR:Uo
Cil=g.
C2=p.
DO 2 K=1.:3
URT1(K)=RTL1(K)/RT1(4)
C1=C1+RT1(K)*VT1(K)
C2=Cc2+VT1(K)*VT1(K)
Cl=C1/SuRPMY
C2=C2*RT1(4)/PMU=1.
ALP=(1+=C2)/RT1(4) @ ALP.LT.0y = HYPERBOLAr EFLSF ELLIPSE

XMAX=XMAXO

IF(ABS(ALP) «LT.1.E=30)60 TO 1
IF(ALP«LT.04) XMAX=SQRT(50,/ (=ALP))
IF(ALPeGTe04) XMAX=TWOPI/GQRT(ALP)
IF (xMAX.GT 4 XMAXO) XMAXZXMAXO
CONTINUE

IF(rD.LT.0,)G0 TO 101 Y YES ™ NEGATIVE TRANSFER TIME
TP=xMaAX/ (ALP*SQRPMU) 2 TP = ORBITAL PERIOD
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IF(1P.LT,0.)G0 TO 102
IF POSITIVE TRANSFER TIME AND POSITIVE NRBITAL PERIOD renUCE TD
UNTIL O ,LTTOLT.TP
143 IF(ID,LT.TP)GO TO 102 Y FORCE 0.LE.TD,LT.TP
TO=TC-TP
XREIXR+XMAX
TR=TR+TP
GO 1O 133

142 CONTINUE
X=XINIT=XR
XMIN=N.
IF(XeLEeDe «ORs X GEJXMAX)X=XMAX/2,
GO 70 104
101 CONIINUE B HNEGATIVE TRANSFFR TIwF
XMIn==XMAX
XMAX=0.
X=XINIT
IF(XeGE0s +ORe XoLToXMIt1)X=XMIt/2,

luy CONTINUL @ BRANCHES OF TEST OF TH COME TOGFTHER HERE
IF(ARS(T21P)+GT.0.)T21P=T21P~TR
DELXx=X

IF(A3S{XP) e 6T 0. )DELX=EX=YP+XR
EPSKEP=ARS(EPSK*TD)

SET INDICATORS FOR ITERATOR SUBROUTIMES CleC2 AND ALP ARF
CONSTANT WITHIN THE LOOP
IF4=C
IF3=0
CK:U .
MAMELIST/NLKZZITKEP»TD»T212T21P, TERRYEPSKEP s XIMITy X9 XPo
. DELAPEPSK e XMAX o XMINICLeC20ALPYZTA»CZTA»SZTA
STAKT OF ITeRATION LOOP
105 CONTINUE
X2=xX%*X
ZTA=ALPxX2

CALL DELTII P BATTIN'S TRAMSCENDENTAL FUNCTIOMS

TERR=TD-T21
IF(ARS(TERR) «LE.EPSKEP)GO TO 106 RHAS CONVERGED
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IS PRINTING OF ITERATION REQUIREN?
IF(IPTKEP+EQe0.ANDe JPKEP.EQ.0)G0O TO 115
PRINTING IS REQUIRED = CHECK IF HMORMAL PRINTING
IF(IPTKEP.EQ.0)GO TO 116
TROUBLE PRIKWTING
IF(IPKEPLTJPTKEPYGO TO 115
IPKEP=0
WRITE (6+sNLKJ)
GO0 10 115
NORMAL PRINTING
116 IF(IPKEPLT.JPKEP)GO TO 117
IPKEP=0
WRITE(62HLKS)
117 CONTINUE
CONTINUE ITERATIONS AS REQUIRED
11% IPKEPzZIPKEP+1
CONTINUE IF mMaAXIMUM NUMPBER OF
ITERATIUNS 14AS NOT BEEN EXCEEDED
IF(1TKEP.LE.MITKEP)GO TO 120
KEPLER HAS WOT CONVERGED WITHIN ALLOWAZLE NUMBEF OF ITEPATIONS
IFUIPTKEPEQ«1)GO TO 106

WRITE(6,112)
112 FORMAT(//7 * * x x KEPMIT DID NOT CONVERGE WITHIN?
. '* MAXIMUM NUMBER OF ITERATIONS * * % % x /)

GO pACK AND PRINT ITERATIONS IF REQUIREN
IPKEPZUPTKEP
IPTKEP=1
XINIT=TSKEP(1)
XP=TSKEP(2)
T21P=TSKEP(3)
TO=T1SKEP (4)
WRITE(6+200)
WRITE(6sNLKY)
IF(UPTKEP.GT.0)GO TO 113
GO TO 10€

CALL ITERATQR (PSEUDO CALL)

120 IF(ABS(T21=-T21P) .GT.0.)G9 TO 121
DELX=0De.
GO TO 110

1c1 DELX=DELX*TERR/ (T21=T21P)
IF(LELX.GT.0,)G0 TO 107
XMAx=X R MOVE IN JPPER BOUND
IF (XMIN.GE o (X+DELX) ) DELX=049% (XMIN=X)
GO TO 108
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CONTY INUE
XMIn=X @ MOVE IN LOWER BOUND
IF(XMAX LTe (X+DELX) )DELX=0¢9% ( XMAX=X)

CONTINUE

DECREMENT ITERATION COUNTER
ITKeP=ITKEP+1
INCKEMENT X BY CELX AND CONTINUE ITERATION.
IF DELX IS TOO SvALL TO EFFECT X THEM LEAVE LOOP
TS1:=X
X=X+DELX
T21p=T21
IF(ABS(X=TS1)«GT20¢)GO T? 105

ITERATION HAS NOT CONVERGED» BUT DELX IS SO SMALL IT WTLL NOT
EFFECT X

CONTINUL

IF(UPKEP+IPTKEP) .EQ.0)GO TO 106

WRITE(6,111)

FORMAT(//1H » ' % * x * NELX IS TOO SMALL TO EFFFCT X * x
* x x V)

WRITE(60NLK3)

THROUGH ITEKATINGs CALL STATE VECTOR SURROUTINE

CALL NEWSTI

SET XP AND 721P TO SOLUTION VALU<
XINIT=XP
XP=x+XR
T21pP=T21+TR
IF(IPTKEP «EQe 0+ ANDe JPKEP.EQ,0)RFTURN
WRITE (62NLK3)
WRITE(6,114)
NAMELIST/NLK1/X»TDeT21» TFRReRT2, VT2, ITKEP
WRITF. (6,MLK1)
FORMAT(? * % x *x % SOLUTTOM OBTAINED BY KEPMIT IS * % * ¢
" ok %k V)

RETURN

END
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SUBROUTINE LAMMIT

SUAROUTINE LAMMII

ax¥x LAMBERT SUSROUTINE (LAMMIT)

240

241
113

INPUT RTL1oRT2+,TU21eSGrIF1yDCOTSeIF2,UNePMU, TENL
QUTRUT  VTL1,VT2:COTOUAMYIFS

INCLUDE QCONIC

INCLUDE GSPNT
IFb=0 @ CLEAR SOLUTINON FLAG
IF3z1 @ SET FLAG FOR ITERATOR
IPLaM=JPLAM
PRINT OUT CalbL LIST IF JPLAM.GT.N
IF(UPLAMLFR.NIG0 TO 201
WRITE(6,200)
FORMAT(Y LAMMIT IS CALLED WITH THE FOLLOWING VALYES?Y)
HAMELIST/NLKG/ZRTLIRT2eTD21e5GrIF1eNCOTGCOTGAM
WRITE (6o NLKY)
CONT INUE
CONTIMUE
MITLAMZZ20 o MAXIMUM NUMRER OF ITERATIONS ALLOWED
ITLAMZO
IPTLAM=0
PSEUDO CALL TO GEOMETRIC PARAMETFER SURROUTINE

CTHLTA=U.
UCO 1 KZ1.3
URTI(K)=RTI(K)/RTI(L)
URTZ(K)=RT2(K)Y/RT2(4)
CTHETASCTHETA+URTLIK) *xURT2 (K)
UN(1)ZVCROSM(URT1/UKT2)
STHETAZUN(4) %56
U(L)=Un(1) /STHETA
UN{2)=UN(2)/STHETA
UN(3)=UN(3) /STHETA
UN(g)=1.
RESUME
ZLAMZRTLI(4)/RT2(4)
EPSLAM=ARS (EPSL*TD21)
P1=1.-CTHETA
IF(PL.LT1.E=8)G0 TO 360 RTRANSFER TOO NEAR 180 NR 360
P2=CTHETA=-ZLAM
COTMAX=STHETA/PL4SART (2, «Z2LAM/PL)
TEST FOR GAMeLT (1 DEG 4745 MIN) = IF S0 LIMIT COTMAX
IF(COTMAX«GToCOTMX)ICOTMAX=COTMX
COTnMIN=COTMN
IF(5GeGTe0.)COTMINZP2/STHETA
TEST FOK GAMGT. (178 DEG 125 MIN) = IF SO LIMIT COTMIN
IF(COTMINSLTLCOTMN)COTMIN=COTMN
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COMPUTE INITIAL GUESS OF COTGAM IF IF1 IS SET = IF1 IS NNRMALLY
SET ONLY 0N THE FIRST CALL TO LAMBERT

CK:l N e

IF(IF1ecGeU)GO TO 339

CK:U025

COTOGAMZ(COTHMAX+COTMINY /2, @ INITIAL VALUE FOR COTGAM
RCOIG=CUTGAM R TWITIAL VALUF OF DCOTG

T21P=0.
MAMCLIST/NLKZ/ZITLAM COTOGAM GCOT G EPSLAMy COTMAX» COTMINY
TO21eT21P e T21 0 TERRICTHETAPSTHETA»PLsP22CKe ZLAM» PNy ALPN Y
ZTAYCZTAPSZTAr X9 IF 7

lF (\Jr)LAl‘]oGT 0000}'-0 I“TLAM' "TOU)WRITE(E)'NLK_‘)

STAKT OF ITERATLON LOOP

CO~NT InUE T LAMBLOOP ENTRY POINT

PNzZp1/(COTGAMXGTHE TA=P2)

IF (oL« 06)GO TG 303 A CORRECTIVE ACTION REAQUIRLD
ALPI:Z2 e =PMN% {14 +COTGAM%%2)

CALL GETXI

T21P=T21

JIFCIF7.LGe1)G0 TO 303 2 CORRECTIVE ACTION READ
CALL DELTII R CALCULATS TRAMSFER TIYE T21

TErr=TD21=T21
IF(ARSCTERR) oLTLEPSLAMIGY TO 305 RAHAS CONVERGED

INCREMEINT 11ERATION COUNTER

ITLAM=TITLAM+Y

1S PRINTING OF ITERATIONS REQUIRTEL?

IF(IPTLAMGEWS Us AND e JPLAMLEQ2.0)60 TO 115

PRILTIIG IS REQUIRED = CHECK IF JOR4AL PRIMTING

IF(IPTLAMGEW.0)GO TO 116

TROUBLE PRIKTING

IF(IPLAM.LTLJPLANM)IGU TO 115
IPLAM=ZO

WRITE(60HLKS)

GO 1D 115

NORMAL PRINTING

IF(IPLAM.LT.JPLAMIGO TC 117
IPLAM=0

WRITE (6eNLK3)

CONT INUE

CONTINUE ITERATIONS AS REQUIRED

IPLAMZIPLAM+]
IF(LTLAMGTMITLAM)IGO TO 332

PSEUDO CALL Tn [TERATOR SUSBROUTINE (WITH IF4=0)
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IF(LF3.EQ.0IGO TO 320 w FaLL THRU DNLY ON FIRST ITERATION
IF5=0

LCOTH=ZCR*(COTMAX=COTVIN)

CCOIO=SIGNIDCOTGe TERR)

GO 10 321
3.0 CONT IMUE 0 ARANCH USTN AFTER FIRST PASS
DCUIGZDCOTH®TLRE/(T21=T21P)
521 CONTINIUL
IF(LCOTLGTL0YLN TO 322
COTAX=COTGAM a LOWTIR UFPER BOUMD

IF{COTMINGGTCOTGAMENCCTS)INCOTO=0.94(COTMIN=COTGAM)
Gu 12 328

3z2 COTMINZCOTLAN w RATSE LOWER BOUMND
IF(COTMAX LT COTGAMDCOTS)INCOTEZ03* (COTMAX=COTGAM)
323 CUNT ITIVE w RETURMN FROM ITEZRATOR SURROUTINE

CHANGE COTGam AnD 60 TO START OF ITIRATION LOOP,
IF UCOTL DUELS NUT CHANGE COTGAM THIZy LzAVE LOOP
T51=CCTGAM
COTGAV=COTGAMHDCOTH
IF(ABSICOTSAM=TS1) +TaUL)GED TOSN2

GO TO 331
IF((PNeLEe04) «ORIF7.FU«IITHEN JUMP HERE FOR CCRRECTIVE ACTION
3.3 CONHTINUE T INERP
IF{UPTLAMLED0) 6O TO 409
WRITE(60,401)
41 FORMAT(/Y CORKECTIVE ACTION RECUIRED IN LAMMIT*)
WRITE(6eNLKO)
4,0 CONTINUE

GO 10 4u3



351
357

Appendix K (Continued) -4 -

IF ALPRhN BECOCMES TOU LARGE THEN CHMZI HERE FOR CORRECTIVF ACTION

COomT I . HICHNERGY

IF(UPTLAMEdeG) GC TO 8403

AR1ITE(60401)

WRITE(HeNLKS)

ConT U

COTMmIN=COTGAN

Gu 10 311
FCOMES TOO LARGL THEN COYE HERE FOR CORRECTIVE ACTION
CONTINUE

T21=TZ21p

CONY InUL N LOFENERGY

COTMAX=COTGAM

CONT IUE

DCOUTG=LCOTG/ 2.

TS1=COTGAM

COTOLAMZCOTGAM=DCOTG

IF(A3S(C0TEAM=TS1)« 0T 0,) 50 TOQ 302 N50 TO LAMRLNOOR
G0 10 350

WRITE(D0333)

FORIZATC(Y * % * LAMRERT DID HOT CONVERGE WITHIM EPLSAM!
v AFTER MAXIMUM ITERATINNS % * %x V)

WRITE(H/NLKS)

GO 10 330

WRITE(6¢337)

FORMAT(* * x * DCOTG IS TOD SMALL * x % ')
WRITE(62NLK3)

GO TO 330
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Appendix K (Continued) -5 -

LAMBERT

GO BACK

CONTINUE

WRITE(6,119)
FORMAT( * **xTRANSFER T0O NEAR 180 OR 360 DEGREES IN
' LAMMIT k%%t
SET IFS5 FLAG
IFbz1
WRITE (69NLK3)
RETURN
IF(ABS(TERR) LT.EPSLAM)GO TO 305
WRITE(6,338)
FORMAT(Y x * *LAVBERT DIN NOT CONVERGE WITHINY
* TOLERANCE OF CK1xTp21")
IF5=1 W SET FOR MO SOLUTIOM
HAS NOT CONVERGED WITHIN ALLOWABLE NUMBER OF ITFRATIONS
IF((PTLAM.EQ.1)G0 TO 305
AND PRINT ITERATIONS AS REQUIRED
IPLAMZJUPTLAM
IPTLAMZ]
WRITE(60200)
WRITE(6,MLKY)
IF(JPTLAM.GT.0)GO TO 113
CONTINUE B CALCULATE VT1
TS2=SQRT (PN*PMU/RT1(4))
GV2(1)=VCROSS(UN,URT1)
VTL1(1)=(URTL1(1)%COTGAM+GV2(1))*TS2
VT1(2)=(URT1(2)*COTGAM+GV2(2))*TS2
VT1(3)=(URTL1(3)*COTGAM+GV2(3) ) *TS2
VIL(4)=SORTIVTI (I AVTLI(L) +VTI(2)*xVTI(2)+VT1(3)xvT1(3))

GO TO *MEWSTATE' VIA INTERNAL ENTRY POINT *LAMENT' TO COMPUTE
TERMINAL VELOCITY VT2 IF FLAG IFM1 IS CLEAR

END

IF(IFN1.EQ.0)CALL LAMENT

IF(IPTLAM,GT+0.0R«JPLAM,~Q.0)RETURN

WRITE(6sNLK3)

WRITE(6,114)

FORMAT( % * % SOLUTION ORTAINED BY LAMMIT IS * % % )
NAMELIST/NLK1/RT1/VT1sRT2,VT2,TN21,T219COTGAM»SGy IFS
WRITE(6sNLK1)

RETURN
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APPENDIX L

SUBROUTINE NEWSTI

SUBROUTIMNE NEWSTI

*kkx STATE VECTOR SUBROUTINE (NEWST)
CALLED 3Y TTHETAKEPLERLAMBERT

INPUT
OUTPUT

END

RT1,VT1oURTL1eX»ZTArSZTA»CZTA» X2CZTA»T21,PMU
RT2,VT2

INCLUDE QCONIC

X2=x%*X

X3=x2%X

X2C.TAZX2*CZTA

TS1=RT1(u)=X2C2Z2TA

T52=T21=-X3%SZTA/SQRPMU

DO . K=1»3

URT1I(K)=RT1(K)/RT1(4)

RT2(K)ZURTI1(K)*TS1+VT1(K)*TS2
RT2(4)=SQRT(RT2(1)*RT2(1)+RT2(2)%RT2(2) +RT2(3)*RT2(3))

ENTRY LAMENT @ ENTRY POINT FROM LAMMIT

TS1=SQRPMU*X*x (ZTA*SZTA=1.)/RT2(4)

752=21,-X2C2ZTA/RT2(4)

VTI2(1)ZURTL1(1)*TS1+VT1(1)*TS2
VT2(2)=URTL1(2)*TS1+VT1(2)*TS2
VT2(3)ZURTL(3)*TS1+VT1(3)*TS2
VT2(4)=SQRT(VT2(1)*VT2(1)+VT2(2)*VT2(2)+VT2(3)%yT2(3))

RETURN
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APPENDIX M

SUBROUTINE PARAMI

SUBROUTINE PARAMI

CONIC PARAMLTERS SUBROUTINE (PARAM)
CALLED BY TIMRAG,TTHETA

INPUT
oUTHUT

RT1,VT1,PMU
ALPNs PNy COTGAMPUNSsURTL» IFCOGA

INCLUDE QCONIC

SG=1. W FORCES GAM TO FE CALCULATED IN RANGE
@ (0,180) DEG

IF2=z0 @ FORCES GFOM TO CALCULATE UN

IFCUGA=U @ CLEARS CNTGAM OVERFLOW INDICATOR

PSEUDO CALL TO GFOMETRIC PARAMETFRS SURROUTINE
INPUT RT1,VT101IF2¢56
OUTPUT SINGAMs COSGAMsUNyURTLIUVTY

RESUME

COSGCAM=0.

DO 1 ¥=1,3

URT1 (K)=RT1(K)/RT1(4)
UVT1(K)=VT1(K)/VT1(4)
COSGAM=COSGAM+URTLI(K) *UVT1(K)
GV1(1)=VCROSM(URT1:UVT1)
SINGAM=GV1(4)
UN(1)=6V1(1)/SINGAM
UN(2)=6V1(2)/SINGAM
UN(3)=GV1(3)/SINGAM

COTGAMZCOSGAM/SINGAM

IF 6AM NOT IN RANGE 1 DEG 47.5 MIN TO 178 DEG 12.5 MIN
THEN SET INpDICATOR

END

IF(ABS(COTGAM) .GT,COTMX) TFCOGA=1
C3=RT1(4)*xVT1(4)*=VT1(4)/PM)

ALPN=2.~C3 ? RATIO OF RT1(4) TO SEVIMAJOR AXIS
PNZC3+«SINGAM*SIHNGAM

RETURN

7 RATIO OF SEMILATUS LATUS TO RT1(4)
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APPENDIX N

SUBROUTINE PERAPI

SUBKOUTINE PERAPI
*x*x PERICENTER=APOCENTER SUBROUTINE (PERAPO)
COMPUTES THE TWO BODY APOCENTER AND PERICEMTER ALTITUIDES
CALLED RBY P30,P37+P32 THRU P35,p72 THRU P75)MANUPARM
INPUT RT1,VTL1ePMU
OUTRPUT  HA»HPYECC+PNI/RAYRP

INCLUDE GCONIC

CALL APSIDI R APSIDES SUBROUTINE

HP= P ~Rfs
HAZKA=RH

RETURN

END
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SUBROUTINE TRADI

SUBKOUTINE TRADI

*x%x TIMERAD SUBKOUTINE (TRAD)

5u0

Sul

503

INPUT RT1,VT1,PMUIRT2¢SRRYIF6
OUTPUT T21,VT2,IFByIFCOGAYIFS

INCLUDE QCONIC

CALL PARAMI @ CONIC PARAMETERS SUBROUTINE
IF(1IFCOGA.EQ.0)G0 TO 500 @ YES -~ SOLUTIGM EXISTS

PSEUDO CALL TO TTHETA TO INDICATF NO SOLUTION EXISTS
RETURN

CONTINUE

TS1=COTLAMESQART (PN%(2,~ALPN))

TS2=1.-ALPN

EVEC(1)=URTL1(1)*TS2=UVT1(1)*TS}

EVEC(2)=URT1(2)*T7S2=UVT1(2)*TS}

EVEC(3)ZURT1(3)*TS2=-UVT1(3)*TS1

EVEC(4)=SORT(EVEC(1)*EVEZ (1) +EVEC(2)%EVEC(2) +EVEC(3)

*EVEC(3))

UEVEC(1)=EVEC(1)/EVEC(4)

UEVEC(2)=EVEC(2)/EVEC(Y4)

UEVEC(3)=EVEC(3)/EVEC(Y4)

UEVEC(4)=1,

IF(EVEC(4) «GE+1,/262144, ANDEVEC(U) ,LT.8.)GO T0 501
FAILURE OF aBOVE TEST INDICATES FAILURE

IF9z1

RETURN

CONTIMUE
COSF=((PN*RT1(4))/RT2(4)=1,)/EVEC(4)
IF(ABS(COSF) «GE.1.,)G0 TO 503
COSF2=COSF*COSF

IF(COSF246T.1.,)G0 TO 503

IF8=0

SINF=SRR*SQRT(1.,=-COSF2)

GO 70 Sau

CONT INUE @ ABS(COSF)eGE«ls) = SET COSF=1, wITH
COSF=SIGN(1lerCOSF) » SAME SIGN

SINF=n,

IF8=1 @ INDICATES RT2(4) IS QUTSINE RAMNGF
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504 CONTINUE
CTHETA=U,
GV2(1)=VCROSU(UNIUEVEC)
DO 2 K=1.3
URT2(K)=UEVEC (1) *COSF+GV2(K)*SINF
2 CTHETASCTHETA+URTI(K) *URT2(K)
STHETA=SORT(1+=CTHETAX%*2)
GV1(1)=VCROSU(URT1URT2)
GV1(1)=6VI(1Y+UN(])
GV1(2)=GV1(2)+UN(2)
GV1(3)=35V1(3)+UN(3)
GVI(4)=SORT(GVI(1)*GVI(1)+GV1(2)%GV1(2)+GV1(3)%xG6V1(3))
IF(GVI(4) oLTele)STHETAS-STHETA

CALL GETXI

IF9=-0 WINDICATES SOLUTIOM IS VALID
CALL OELTII @ CALCULATE T21

IF(IF6.EQR.1)RETURNM
CALL NEWwWSTI @ CALCULATE FINAL STATE
RETURN

END



APPENDIX P

SUBROUTINE TTHETI

SUBROUTINE TTHETI
C x#xs TIME-THETA SUBROUTINE (TTHETA)
c CALLED 8Y CSI/A+CDHMVRIP34(AND P74)PREC/TT (IN P35 ANN P75)»TRAD
C INPUT RT1,VT1ePMU»STHETAYCTHETA» IF6
C OUTPUT RT2,VT2¢IF7»1FCOGA
C

INCLUDE QCONIC

C

C
CALL PARAMI @ CONIC PARAMETER SURROUTINF
IF{IFCOGAEQ.1)GO TO 400 Q9 NO SOLUTION
CALL GETXI
IF(IF7.EQ«1)G0 TO 401 QA NO SOLUTION
IFCuGA=0
CALL DELTII ABATTIN'S TRANSCEMDENTAL FUNCTIONS

C
IF(IF6.EC.1)RETURN I RET'IRN T2}
CALL NEWSTI @ STATE VECTOR SUBROUTINE
RETURN @ RETURN T21,RT2,VT2

C

490 CONTINUE @ NO SOLUTION = GAM YO NEAR 0 OR 180 [FG
IFCuGaA=1
RETURH

C

401 CONTINUE B NO SOLUTION = CLOSURE THRU INFTMITY
IFCUGA=0
RETURN

END



APPENDIX Q

SUBROUTINE DELTII - SERIES SUMMATION FORM

SUBKOUTINE DFLTII
C xx*3x COMPUTES BATTINS TRANSCENDENTAL FUNCTICNS BY MEANS OF SERIES
C
INCLUDE oCONIC
C
CZTa=.5
SZTA=1e/60
F2hz2,
BASE=SZTA
ICONT=0
7 F2N=F2a2N+2,
BASET«BASE*ZTA/F2N
CB=CZTA
CZTA=CZTA+BASE

BASE=BASE/ (F2N+1.)
SB=SZTA
SZTA=SZTA+BASE

IFCABS(SZTA-SB).GT.0.0R.ABSCCZTA-CB).GT.0)GO TO B
GO 10 9
8 ICONT=ICONT+1
IF(ICONT.LT.100)GO TO 7
WRITE(6+29)
29 FORMAT(//// * SERIES FAILED TO CONVERGE IN DELTIT * )

9 X2=x%X
X2CZTA=X2*C2TA

T21=Z(C1*X2CZTA+X* (C2%X2«SZTA+RT1(4)))/SGRPMU
RETURN
END



